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We consider the 3-dimensional spatially homogeneous Boltzmann equation, which
describes the evolution in time of the velocity distribution in a gas, where particles
are assumed to undergo binary elastic collisions. We consider a cross section bounded
in the relative velocity variable, without angular cutoff, but with a moderate angular
singularity. We show that there exists at most one weak solution with finite mass and
momentum. We use a Wasserstein distance. Although our result is far from applying
to physical cross sections, it seems to be the first one which deals with cross sections
without cutoff for non Maxwellian molecules.
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1. INTRODUCTION

We consider a spatially homogeneous 3-dimensional gas. Let f(¢, v) stand for
the density of particles with velocity v € R? at time ¢ > 0. Then f solves the
Boltzmann equation

160 = [ dv. [ doBv= o 607G f0 ) = 00700

(1.1)
U+U* |U U*

where v’ = 5o and v, = S5 ——0 and 0 is the angle between v —
veando. The cross sectzon B(|v — v*|, 0) = B(|v' — v,|, 0) represents the rate at
which two particles with velocities v’ and v, (resp. v and v,) collide in such a way
that the resulting particles have the velocities v and v, (resp. v’ and v}). We refer
to Desvillettes® and Villani ¥ for many details on what is known on this topic.
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Conservation of mass, momentum and kinetic energy hold at least formally
for solutions to (1.1), that is for all ¢ > 0,

1 1
/]1;@ (|1j)|2> f(t, v)ydv = /1;{3 (|;}|2> f(0,v)dv, (1.2)

and we classically may assume without loss of generality that fR3 (0, v)dv = 1.
Another important a priori estimate is the decrease of entropy: for all # > 0,

/ f(t,v)log f(t,v)dv < / £(0,v)log (0, v)dv. (1.3)
R R

For example, the solutions built in Goudon” or Villani!®) enjoy these properties.

We consider here the problem of uniqueness. We will assume that the cross
section is of the form B(|Jv — v,|, 0)sin6 = b(|v — v,|)B(H). From the physi-
cal point of view, one usually assumes that b(Jv — v,|) >~ |v — v,|¥ for some
y € (=00, 1], that [ B(6)d6 = oo, but [ 62B(6)d6 < oco. Hence B should be
allowed to explode near 0, which expresses the predominance of grazing collisions.

In the case with angular cutoff, that is when fon B(0)dO < oo, there are some
good uniqueness results, see Mischler-Wennberg.

All the available results in the case without cutoff concern Maxwellian
molecules (b = 1). The first result was that of Tanaka, ! who proved the unique-
ness of the solution to a martingale problem associated with the Boltzmann
equation (assuming thatb = 1, fon 0B(6)do < coand [o:(1 + [v]) f(0, dv) < 00).
Horowitz-Karandikar ® obtained the first true uniqueness result for the Boltzmann
equation, assuming that b = 1, [ 62B(6)d6 < 0o and [5:(1 + [v[*) £(0, dv) <
0o. Under the same assumptions, Toscani-Villani(!?) were able to give a much
simpler proof. All the previously cited works deal with measure solutions.

We aim here to prove the uniqueness (and continuous dependance in the initial
condition) of solutions for some cross sections of the form B(|Jv — v,|, 8)sinf =
min (v — v,|", 4) B(O), with y € (—o0, 00), 4 € (0, 00) and with foﬂ 0B8(6)do <
oo. In practise, this assumption imposes an upperbound on the relative velocity.
Similar unphysical assumptions have been often used in kinetic theory to avoid
problems in proofs, see for example Arkeryd and Nouri." Our result holds for
function solutions having finite mass and momentum. We use a Wasserstein metric.
Our method is inspired by the works of Tanaka,'”) Horowitz-Karandikar® and
Desvillettes-Graham-Méléard. )

Let us finally mention that in a work in preparation, Desvillettes-Mouhot®)
obtain some new uniqueness results. It seems that their result applies to the (much
more realistic) case b(Jv — vi]) = |v — vi|¥, ¥y € [0, 1], with also a moderate
angular singularity fon 0B(0)d6 < oo. They work in Sobolev spaces with weights,
so that they assume much more regularity on the initial condition.
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We present our main result in Sec. 2 and handle the proof in the next sections.

2. MAIN RESULT

In this section, we first write in a suitable weak form the Boltzmann equation,
we introduce the distance we will use and we state our main result.

We denote by Lip(R?) the set of globally Lipschitz functions ¢ : R — R.
We consider the set P(R?) of probability measures on R?, and

Pi(R®) = {f € PRY), mi(f) < o0}, mi(f)= /R} vl f(dv). 2.1

A measurable family ( f(¢));=0 of probability measures on R? is said to belong to
L2 (Pi(R¥)) if forall T € [0, o0), supyo, 71 m1(f(¢)) < 0o. We denote, by Pld(R3)
the set of probability measures f € P;(R*) having a density with respect to
the Lebesgue measure. A family (f(¢))=0 € L52.(P1(R?)) is said to belong to

L;’jc(Pf(R3)) if for each ¢t > 0, f(¢) has a density.
For v, v, € R?, and for o € S2, we write
U+ Uy |U - v*|
U?
2 2
and we denote by 6, ¢ the colatitude and longitude of o in some spherical coordi-

nates with polar axis (v — v,).
We will consider the following class of cross sections.

vV =1'(v,v4,0) =

2.2)

Assumption (H). The cross section is of the form B(z, 6)sin0 = b(z)B(0) for
some functions b : [0, 0c0) — [0, 00) and B : [—m, w]\{0} — [0, co). Further-
more, k] = foﬂ 0B(0)d6 < oo. Next, b is continuous and bounded by a constant
k. Finally, there exists a constant 3 such that for all x, y € [0, 00),

x(b(x) = b(y))+ < k3lx —y|, where (b(x)— b(y))+ = max[b(x) — b(y), 0].
2.3)

Remark 2.1. We are still far from general physical assumptions. Note
however that that for any y € (—o0, 4+00), any A € (0,00), B(z,0)sinf =
min(z”, A)B(0) fullfills (H) as soon as fon 0B(0)do < oo.

We now define the notion of weak solutions we will use.

Definition 2.2. A family of probability measures f = (f(t))i>0 €
L2 (P1(R%)) is said to be a weak solution to (1.1) if for any ¢ € Lip(R%),
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anyt > 0,

/ $(0)f (¢ dv) = f $(0) (0, dv)
R3 R3

+'/Ot ds /R} f(s,dv)fR} f(s,dv)Ad(v, vy), (2.4)

where

T 2
Ap(v, v2) = b(lv — ) /0 d68(6) /O dolp() — d)]. (2.5

Note that for any o € S?,

1— 0 %
o =0l = o= vl = = Sl -l 2.6)

so that that under (H) and for f € L (P;(R?)), all the terms in (2.4) are well-

loc
defined. Let us introduce the distance on P;(R?) we will use.

Notation 2.3. Forg, g € Pi(R?), let H(g, &) be the set of probability measures
G on R® x R with marginals [;_g, G(dv, dv) = g(dv) and [ _,, G(dv,dD) =
£2(dD). We then set

di(g, &) = inf {/R} . lv — 3|G(dv, dv), G e H(g, g)}. @.7)

One may check that the inf is actually a min, and that for g, g, € Pi(R?),
lim, d1(g,, g) = 0 if and only if for any ¢ € Lip(R?), lim, [ ¢(v)g.(dv) =
[ ¢(v)g(dv). We refer to Villani [15, Sections 7.1 and 7.2] for more details on this
distance.

Theorem 2.4.  Assume (H). For any pair f, f € L2 (PI(R3)) of weak solutions
to (1.1), anyt > 0,

d\(f(0), [(1) < di(f(0), f(0))eT1eter, (28

Thus for any foy ePld(R3), there exists at most one weak solution f €
L2 (PURY)) to (1.1).

Notice here that since d; is well-defined on P;(IR?), and since the constants in the
right hand side of (2.8) do not depend on £, £, our result should extend to any
pair f, f € L (P1(R%)) of weak solutions. However, a lack of continuity in the
parameterization we use (see Notation 3.1 below) enforces us to assume that f
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and f admit densities. This restriction could be removed for the 2-dimensional
Boltzmann equation.

The rest of the paper is dedicated to the proof of this result: we state some
preliminaries and prove our main result in Sec. 3, and conclude in Sec. 4 with the
proofs of preliminaries.

3. PROOF

Consider two weak solutions / and f to (1.1). The main idea of the proof
is to build a family (F(¢));»o of probability measures on R* x R? such that for
each ¢ > 0, the marginals of F(r) are f(¢) and f(¢), and in such a way that
F(t,dv, dD) is supported as much as possible around the diagonal v = 9. To do
so, we will build a sort a coupled Boltzmann equation, of which the solution F
has as marginals / and f. The dynamics of F has to modify its two marginal in
a very similar (or coupled) way. We thus have to parameterize precisely the post-
collisional velocities. We follow here the approach of Ref. 6, which was strongly
inspired by Tanaka.1?

Notation 3.1. (i) For X € R*\{0}, we set I(X) = % s X, 0)if X2 +
Xi > 0 and I(X) = (X;, 0, 0) else. We also build J(X) = IX\ A I(X). Then for

each X € R3, ( \BY(I’ II(;(I) , Jl()f)) is a direct orthonormal basis of R3. Furthermore,

I and J are almost everywhere continuous. (ii) For ¢ € [0, 2r], 6 € [0, 7], and
X, v, v, € R3 we introduce
I'(X, ) = (cos 9)1(X) + (sin @) J (X)),
V=0, 0.,0,0) =v+av, v, 0,9)

cosf — 1 sind
— v+ T( —vy) + —F(v Vs, @). (3.1

One may then write, for all ¢ € Lip(R?), any @y € [0, 2] (Which may depend on
v, Vs, 0),

Ap(v, vy) = b(jv — v*l)/ d9ﬂ(9)/ dolp(v' (v, vy, 0, @) — P(v)]

T 2
— (v — v,]) [o d6B(6) /0 dplp( (v, v 0.9 + 90) — O], (3.2)

We use here and below the abusive notation ¢ + ¢y = ¢ + @o [mod 27 ].

One problem with this parameterization is the lack of smoothness of the maps
X +— I(X)and X — J(X). To overcome this difficulty, we will use the following
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fine version of a Lemma due to Tanaka,!? of which the proof may be found in
Ref. 6, Lemma 2.6 (the almost everywhere continuity is not stated in Ref. 6 but is
clear from the proof).

Lemma 3.2.  There exists an almost everywhere continuous function ¢ :
R3 x R3 — [0, 27) such that for all X, Y € R3, all ¢ € [0, 2],

IT(X, ) =T(Y, ¢ + @o(X, V)| <3|X - Y] (33)
This implies that for all v, v, U, U, € R3 allf e [0, ], all ¢ € [0, 27],
la(v, vy, 0, 9) — a(, Vs, 0, ¢ + @o(v — vy, U — 0y)|
<20 (Jv — B + v, — D). (3.4)

We now define a coupled version of the operator A.

Lemma 3.3.  Recall that x Ay = min(x,y) and x, = max(x,0). For
v, 0, D, 0, € R3, and 6 € [0, 7], ¢ €[0,27], we set v =v'(v,v,,6,¢) and
V=D, Dy, 0, @ + @o(v — vy, T — Dy)). For ¥ € Lip(R? x R?), we set

AV (v, vy, U, Uy)

. s [ B0 = val) A BT = 5] [V, 7)) — (o, D)]
=/ wm@/ dod (0 — val) — b5 — )], W, D) — Y(v, D))
0 0 F[6( — 8,0) — b(v — v D], [¥(v. 7)) — Y(v, )]

(3.5)
Assume (H). Then Ay is well-defined for all » € Lip(R3 x R?). Furthermore,

(i) for ¢ e Lip(R?), if (v, D) =) (resp. ¥(v, D) = ¢(¥)), then
Ay (v, vy, U, U,) = Ap(v, vy) (resp. AP (v, vy, D, Uy) = AP(D, Uy)),

(i) if Y(v, ¥) = v — 7|, then

LAY (v, ve, D, 3| < 27i1(262 + k3) (v — D] + 05 — Ta]) . (3.6)

Point (ii) expresses a sort of continuity in the pre-collisional velocities v, v, of the
averaged post-collisonal velocities (for the Boltzmann equation dynamics). It is,
in some sense, the central argument of our proof.

Proof: First, Ay is well-defined for ¢ € Lip(R? x R3) due to (H) and (2.6).
Point (i) is straightforward from the fact that forx, y e R,x A y 4+ (x — )4 = x,
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and from (3.2). We now prove point (ii). Using (H), (3.1) and Lemma 3.2, we
obtain

[b(lv — vil) A DD — DDT IV = V| — v — D]
S K2 |a(v7 U*, 95 (p) - a(1~)7 6*7 97 (p + (pO(v - v*a 5 - 5*))'
< 2120(Jv — T| + vy — Tic). (3.7

Using now (H), (3.1) and (2.6),

[b(lv — val) = b9 — D]y V' = 8] — [v = D|
< [b(Jv = vl) = b(I15 — D]y v — v

0
< 5 [b(jv = vi]) = b(|0 = D)1 v — v

2
<? I | — 10 — Ou]]
—i3||v — vg| = |0 — Dy
=95 3
0
= §K3(|U — U] + |ve — Dyl). (3.3

By the same way,
. ~ N 0 N N
(617 = 0,]) = b(Jlv — v Dl v = V| = v = D] < 5"3(“’ = U+ v — 0). (3.9)

The conclusion follows, recalling that k; = fon 0B(0)do < oc. |

We will need some auxilliary results: first, the uniqueness for a linearized
Boltzmann equation, that will be proved in the next section.

Proposition 3.4.  Assume (H). Let f = (f(t))i=0 € L(P1(R?)) be a weak

loc

solution to (1.1). Consider a family g = (g(¢))i>0 € Lfooc(Pl(R3)) such that for
any ¢ € Lip(R3), any t > 0,

/ $(V)g(t. dv) = f ()0, dv)
R3 R3

—i—/otds /]R@ g(s,dv)/R} f(s,dv,)Ap(v, vy). (3.10)
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Theng = f.

We define P(R? x R3), Pi(R3 x R3), L2 (Py(R? x R?)), P4(R? x R?) and
L;’;’C(Pld(R3 x R%)) as in the case of R3. The following existence result for a

coupled linearized Boltzmann equation will be checked in the next section.

Proposition 3.5.  Assume (H). Consider a given family of probability measures
F =(F(t))s0 € LY (Pfi(R3 x R3)). We say that a family of probability measures

loc

G = (G(t))i=0 € L(P1(R? x R?)) is a weak solution to (LC B(F)) if for any

loc

¥ e Lip(R® x R3), anyt >0,
/ Y(v, 0)G(t,dv, dv) = / ¥ (v, D)F(0, dv, dd)
R3xR3 R3xR3

t
—}—/ ds/ G(s,dv, dD) F(s,dv,, dv,)AY (v, v, D, D). (3.11)
0 R3xR3 R3xR3
There exists at least one weak solution G to (L C B(F)).

Finally, we will need the following Lemma, that will also be checked in the
next section.

Lemma 3.6. Recall Notation 2.3, and consider two probability measures with
densities g, & € PY(R3). Then, if Ha(g, &) = H(g, &) N PR x R3),

R3xR3
We may now prove our main result.

Proof of Theorem 2.4. We consider two weak solutions f, f € L}’a"c(Pld(R3)) to
(1.1), and divide the proof into three steps.

Step 1. Recall Notation 2.3, and fix £ > 0. For each ¢ > 0, f(¢) and f(¢)
are assumed to admit some densities, so that due to Lemma 3.6, we may find
Fé(t) € Ha(f (), f(¢)) such that

di(f(t), f(1)) < f 3 lv — D|F¥(t, dv, dD) < di(f(t), f(t)) +e.  (3.13)

R3 xR3

Then clearly, F* = (F*(t));>0 belongs to L° (Pf(}R3 x R3)). Recalling Proposi-

loc

tion 3.5, we consider a solution G° € L (P1(R? x R?)) to (LC B(F?)), that is

loc
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forall v € Lip(R? x R?),

/ w(u,ﬁ)GE(z,du,dﬁ)=/ W (v, §)FE(0, dv, d¥)
R3xR3

R3xR3
t
—i—/ ds/ G®(s, dv, dD) Fe(s, dv,, dU,)AY (v, vy, U, U,). (3.14)
0 R3xRR3 R3 xR3

For each ¢ > 0, we denote by g°(¢, dv) = fﬁeRg G*(t,dv, dv) and g°(¢, dD) =
fU€R3 G*(t, dv, dD) the marginals of G®(¢). Using Lemma 3.3-(i) and that F* €
H(f(t), £(1)), one easily checks that g, satisfies (3.10). Indeed, for ¢ € Lip(R?),
applying (3.14) to ¥ (v, ¥) = ¢(v) gives (3.10). Hence, by Proposition 3.4, g° = f.
By the same way, §° = £, so that for each > 0, G*(¢) belongs to H(f(¢), f(1)).

Step 2. We set u®(t) = fRBX]R3 lv — 0|G®(¢, dv, dv), and we apply (3.14)
with the choice ¥ (v, 7) = |v — D|]. Using Lemma 3.3-(ii), we obtain, setting
ko = 2k (2K + k3) and using (3.13),

uf(r)gf v — 8| F¥(0, dv, d¥)
R3
t
+K0/ ds/ Gf(s,dv,dﬁ)/ Fo(s, dv.. di)(lv — ] + [, — 3,1}
0 R3xR3 R3

= di(f(0), f(O))+s+x0/ ds [u*(s) + di(f(s), f(5)) +¢]. (3.15)
0

Since G¢ € L°

loc

forallz > 0,

(P1(R? x R?)), the Gronwall Lemma allows us to conclude that

ut(t) = |:d1(f(0)» J(0) + (1 + ko) + KO/O di(f(s), f(S))dS} e (3.16)

Step 3. Due to Step 1, we know that for each 7 >0, ¢ >0, G*(7) €
H(f(t), f(2)), so that d,(f(¢), f(¢)) < u®(¢t). We thus obtain, making ¢ tend to 0
in (3.16) and taking the supremum over time, that for all # > 0,

sup di(f(s), f(s)) < [d1 (f(0), f(0)) + Kot sup di(f(s), f(s))} e (3.17)

We set u(t) = supyg i (f(s), 7(s)). Noting that for x € [0, 1/4], xe* < 1/2 and
1/(1 — xe¥) < e?*, we obtain, for ¢ € [0, 1/4k],

el(ol

u(t) < di(f(0), f(O))l_— < di(f(0), f(0))e™". (3.18)

Kotekot —

We thus have proved that for any pair of weak solutions f, f € L (PL(R?)) to
(1.1), for all ¢ € [0, 1/4«0],

di(f(1), [(1) < di(f(0), f(0))e*". (3.19)
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It is not hard to iterate this estimate, since xy does not depend on the initial data.
For any pair of weak solutions f, f € L (P{(R?)) to (1.1), for all # > 0, find

loc

n € Nsuch that 7/n € [0, 1/4k], and notice that
di(f (1), f(0)) < di(f(t —t/n), f(t —t/n))en
< d\(f(t —2t/n), [t —2t/n))e*o
< ... S di(f(0), f(O))e*". (3.20)

This concludes the proof, since 3xy = 67wk (2K + k3). m]

4. PROOF OF TECHNICAL RESULTS
We still have to prove Lemma 3.6, Propositions 3.4 and 3.5.
Proof of Lemma 3.6. We consider two probability densities g and g, and H €

H(g, ). We fix ¢ € (0, 1). We have to show that there exists G € Hy(g, &) such
that

f v — 3|G(v, B)dvdd < f v — | H(dv,dd) +&.  (4.1)
R3xR3 R3xR3

We disintegrate H(dv, dd) = g(v)dv a(v, dv). We also consider a partition R3 =
U;en 4, enjoying the following property: foreachi € N,eachv, v € 4;, |[v — 7| <
e. Weseto; = [, g(9)dv and

1
G 0):=g@) | av.dw))_ - Nwea) lpeag®.  (32)
we ieN '

Easy computations, using that for all v, fR3 a(v,dv) =1 while for all 7,
fveR3 g(w)dv a(v, dv) = g(¥)dv, show that G(v, ¥)dvdT belongs to Hy(g, &).
Finally,

/ lv — 3|G(v, D)dvdD
R3 xR3

1
- — 7 d — Iy Liseq12(D)dvdo
/R3 /W /}R3 lv — vlg(v)a(v w)za' weu N pes, g(®)dvdd

ieN !

= /1;3 /]1;3 . (Jv — w|+ |Jw — 7)) g(v)a(v, dw)

1 - ~
x ) o Bweay lipea) g(0)dvdd
ieN
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=/ / v — w|g(v)dv a(v, dw)
R? JR3

1
— Nlo d _]1 w ) ]1 5 . ~ d~
+/Rs /]1;3|w 01g(w) wza, twe;} Npes, g(0)dV

ieN
5/ v — w|H(dv, dw)
R3xR3
« 1 .
+8/ / gw)dw Y — e, lpes, g@)dd (4.3)
R JR? ien %

since for each i, each w, v € 4;, |lw — 9| < e. This last term equals f|v —
w|H(dv, dw) + &, so that (4.1) holds. O

Proof of Proposition 3.5. We fix F' € Ly},
eacht > 0, each ¥ € Lip(R® x R?),

51%”(1% ﬁs 01 w)

(P{(R3 x R?)), and we denote, for

[b(lv — v.l) A b5 — BN [W (', V) — ¥ (v, D)]
= / . F(t, dvs, dbs) § +[b(Jv — vi|) = (10 — 8. D], [ (', D) — (v, D)] ¢ - (44)
o + 1615 — Bal) = b(Jv — v [Y (v, ¥) — Y(v, B)]

We have to show the existence of G € L7 (P(R® x R?)) such that for all 7 > 0,
¥ € Lip(R® x R%),

/ G(t, dv, V)Y (v, §) = f F(0, dv, dv)y (v, D)
R3IxR3 R3 xR3

t b4 2
+/ ds/ G(s,dv,dﬁ)/ ﬂ(@)d@/ de&y(v, 1,0, ). (4.5)
0 R3 xR 0 0

We endow P(R® x R3) with the weak convergence topology, which can be
metrized by

8(H, H) = sup
$eBL,

f $[dH — dH]|, (4.6)
R3xR3

BL, standing for the set of globally Lipschitz functions from R? x R? into R,
bounded by 1 and with a Lipschitz constant smaller than 1.

Step 1. Assume first that in addition to (H), A = foﬂ B(6)dO < oco. Denote
by C(P(R? x R3)) := C([0, 00), P(R? x R3)). Then one easily checks the exis-
tence (and uniqueness) of G = (G(1));=0 € C(P(R? x R3)), satisfying (4.5) for
all bounded measurable function ¥. Indeed, it follows from classical arguments,
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remarking that for any bounded measurable function ¥ : R* x R? = R,

b4 2
/Oﬂ(O)dG/O d(ﬂ&lﬁ(-ﬁdp)‘

sup ‘

s€[0,00)

= R2rAwl|lYlle.  (47)
o0

Using that F € LY (P1(R? x R?)) and (H), one easily checks that G belongs

loc
to L2 (P1(R* x R?)), and that (4.5) actually holds for any measurable function

bounded by C(1 + |v]).

Step 2. We thus consider, for each e € (0, 1), B:(0) = B(0)1(p>¢). Then A, =
Jo Be(0)d6 < oo, sothat due to Step 1, there exists (G(#)),z0 € C(P(R* x R*)) N
L (P1(R? x RY)), satisfying (4.5) with B; instead of 8. We now show that for all
T=>0,

K7 := sup sup m;(G®(t)) < oo where
£€(0,1) 1€[0, T

m(G )= |

R3xR

(vl + [9))G*(t, dv, dD). 4.8)

We use (4.5) with ¢ (v, ) = |v| + |0]. With the help of (H), we obtain
m(G*(1)) = m(F(0))

t
—|—K2/ ds/ G*(s, dv, dv) F(s,dvs, dU,)A., (4.9)
0 R3xR3 R3xR3

where, thanks to (2.6),

b4 2
A, = / ﬂ(9)d9/ del|v'| = [v] + V'] — 0]
e 0

T 2 0
< [ p@xo [ apl (vt +10- 5
0 0 2
< iy (ol + |ve] + 9] + |94 (4.10)
We finally obtain

(G (1)) < my(F(0)) + mkics /0 ds [m (G () + m(F(s))].  (4.11)

Since F € L (P1(R? x R?)) by assumption, the Gronwall Lemma allows us to

conclude that (4.8) holds.

Step 3. We now prove an equicontinuity result, namely that for all T > 0,

lim sup sup 8(G°(¢), G°(t + h)) = 0. (4.12)
h=0 ¢e(0,1) 1€[0,T]
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To do so, we consider ¢ € BL; and notice that for all 0 <¢ < T, due to (H),
(2.6) and since F € L (P1(R? x R?)),

loc

&Y (v, 0,0, 9)| < 3/(2/ F(t,dvs, dv)[|v — v| + [0 — 7]]
R3xR3

0
< 3K2—/ F(t, dve. d) [[v — vl + 5 — 0]
2 JrixR?

0 0
=< 3K25 (] + 9] + mi(F(t)] < 3K25 (vl + 19|+ Cr], (4.13)

with Cr = supy 7y m1(F(?)). Hence forall0 <7 <t +h < T,

/ Y [dG(¢ +h)—dG£(t)]‘
R3 xR3

t+h T 27
/ ds/ Gs(s,dv,dﬁ)/ ﬂg(G)dQ/. de&Ey(v, 1,0, @)
‘ R3 xR 0 0

t+h
537TK1K2/ dsf G°(s,dv, dv)[|v| + |9 + Cr]
t R3xR3
<3mkik2 [Cr + Kr]h, (4.14)
where K7 was defined in (4.8). One immediately concludes that (4.12) holds.

Step 4. By the Arleza-Ascoli Theorem (using (4.8) and (4.12)), we may
find a sequence &, — 0 such that G, := G* goes to some G = (G(t));>0 In
C(P(R3 x R?)) as n tends to infinity. We deduce from (4.8) that:

(i) G belongs to L (P1(R* x R?)),
(i) for any ¥ : R?® x R3 > R continuous and bounded by C(1 + [v| + |]),
any t > 0, lim, [ YdG,(t) = [YdG(1),
(iii) forany T > 0, any measurable function I" : [0, 7] x R3 x R? > R with
(v, D) — I'(s, v, D) continuous for each s and such that |I'(s, v, ¥)| <

CA + || + (D),

T T
lim/ ds/ G,\(s, dv, dD)T(s, v,ﬁ):/ ds/ G(s, dv, dD)T(s, v, D).
mJo R3xR3 0 R3xR3
(4.15)

It remains to take limits in (4.5). Let thus > 0 and ¥ € Lip(R> x R?). Due to
(i), fs, g WdGu(t) tends to [p; ps YdG(¢) ad n tends to infinity, so that we just
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have to prove that

tdS (dGu(s) —dG(s)) ' B(6)do B de&y (.. 0, ¢)
0 R3xR3 0 0

t b4 2
—/ ds/ dGn(s)/ n{gyn}ﬁ(e)de/ de&(., 6, ¢) =: A, — B
0 R3xR3 0 0
(4.16)

tends to 0 as n tends to infinity. First, using that |Ey (v, D,0, @) <
OC(T, F, )1 + |v|+ |9|)forall0 <s <t < T (see (4.13)) and (4.8), we obtain

|B,| <27 TC(T, F, )1+ KT)fS" 0B(0)do 4.17)
0

which tends to 0 due to (H). Next, point (iii) above shows that lim, 4, = 0.
Indeed, we already have seen that | ;" B(6)d6 fozn de&r(v, 1,0, @) <
2k C(T, F,¥)(1 + |v] + |9]). On the other hand, one may check that
(v, D)~ [y B(O)dH fozn de&(v, D, 6, @) is continuous for each s € [0, ¢]:
it follows from the Lebesgue dominated convergence Theorem, the facts that
F(s) has a density and that for all 6 € (0, 7], all ¢ € [0, 2], almost all v,, V,,
(v, ¥) = (v/, D) is continuous (recall Notation 3.1 and Lemma 3.2).

Thus G satisfies (4.5) for any globally Lipschitz function. O
Remark that we use only in the very end of this auxilliary proof the assumption
that f, f are solutions admitting densities.

Proof of Proposition 3.4. Let f,g € L} (P (R?)) be as in the statement. A
formal computation shows that < [o. | /(t) — g(*)|(dv) < 0, from which the re-
sult would follow. However, we would have to apply (3.10) with the test function
o(t,v) = sign(f(t, v) — g(t, v)), which is not Lipschitz, so that the computation
is not licit. We have not been able to make this calculus rigorous.

We will use some martingale problems techniques. We consider a weak solu-
tion f = (f(t))=0 € L(P1(R?)) to (1.1). We also consider, for each ¢ > 0 the

loc

operator A, defined for ¢ € Lip(R?) and v € R? by
A = [ 1. dv) Aot ). (4.18)
R3

We will prove that for any o € P;(IR?), there exists at most one g € L5 (P1(R?))

such that for all ¢ > 0, all ¢ € Lip,(IR?) (the set of globally Lipschitz bounded
functions)

/R pglt, dv) = /R ) + /0 ds fR 8. AR, @19)
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Since by assumption, f and g solve this equation with w = f(0), this will
conclude the proof.

Step 1. Let u € Pi(R?). A cadlag adapted R*-valued stochastic process
(Vi)i=0 on some filtered probability space (2, F, (F;)>0, P) is said to solve
the martingale problem M P((A,);0, i, Lipp(R)) if P o VO*1 = u and if for all
¢ € Lipp(R), (M?);=0 is a (R, F, (Fi)i=0, P)-martingale, where

t
M = o)~ [ otras (4.20)
0
Assume for a moment that:

(i) there exists a countable subset (¢ )i=1 C Lipy(R?) such that forallz > 0,
the closure of {(¢x, A;¢), kK > 1} (for the bounded pointwise conver-
gence) contains {(¢, 4,¢), ¢ € Lip,(R3)},

(ii) for each vy € R?, there exists a solution to M P((A4;)i>0, 8v,» Lipp(R?)),

(iii) for each vy € R,  uniqueness (in  law) holds  for
MP((A1)i>0, 8y, Lipy(R?)),

Then, due to Bhatt-Karandikar [2, Theorem 5.2] (see also Remark 3.1 and
Theorem 5.1 inref. 2 and Theorem B.1 in Ref. 8), uniqueness for (4.19) holds. First,
it is immediate that (i) holds, considering a countable subset (¢ )i=1 C Lipp(R?)

dense in Lipy(R?) for the norm |||¢||| = ||¢]lee + SUP, 2y, ‘W‘, using (2.6)
and the fact that f € L (Py(R?)).

loc

Step 2. Classical arguments (see e.g. Tanaka [11, Section 4] or Desvillettes-
Graham-M¢léard [4, Theorem 3.8]) yield that a process (/;);>0 on some filtered
probability space (2, F, (F; )0, P)isasolutionto M P((A,);0, 8u,» Lips(R?))if
and only if there exists, on a possibly enlarged probability space, a (F;);>o-adapted
Poisson measure N(dt, dv,,d6,dy,du) on [0, 00) x R? x (0, 7) x (0, 27) x
[0, k5] with intensity measure dtf (¢, dv,)B(0)d0depdu such that (recall that a
was defined in Notation 3.1)

t T 27 K2
V; =v0+f / / f / a(Vs,,v*,0,w)ﬂ{ugb(m;v*‘)}N(ds,dv*,dG,d(p,du).
0 JR3Jo 0 0
421

We thus just have to prove the existence and uniqueness in law for solutions to
(4.21). After some preliminary stated in Step 3, we will prove the uniqueness
result in Steps 4,5,6 and study the existence in Step 7.

Step 3. We will use that for N =) ;.| §7;.4,.6,.4,.4;) @ Poisson measure as in
Step 2, and for ¢ : 2 x R? x (0, ) x (0, 27) + (0, 27) a predictable function,
N =) 01 8(Tv.6,.0+4(T; 00.6,.0).0;) 1S alsO a Poisson measure as in Step 2. Such a
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property was noted by Tanaka, ') see also [6, Lemma 4.7].

Step 4. For k>1 and N as in Step 2, the Poisson measure
Nos1/mls<ryN(ds, dvy, d6, do, du) is a.s. finite for all 7 > 0, so that there
obviously exists a unique (necessarily cadlag and adapted) solution to

t T 2 K2
e [ [ ko
R3

X Ly <t —v, iy Lio=1/0N(ds, dvs, dO, do, du). (4.22)

Furthermore, the law of (¥}), does not depend on the probability space nor on
the Poisson measure N.

Step 5. We check that for (¥;),>0 a solution to (4.21), (V/)i=0 a solution to
(4.22), forall T > 0, using (2.6),

Cr=E |:sup |V,|:| +sup E |:sup |V |i| (4.23)
[0,7] k=1 [0,7

We thus consider, for each n > 1, the stopping time t, = inf{t > 0, |V;| > n}.
Using (2.6), we deduce that forall0 <¢ < T,

E[ sup |Vl

[0.¢AT,]

s|uO|+Ef f £Gs. dv*)/ B(O)d dwb(wf—v*|)|a(r47,v*,9,<p)|]
AT, 2 2]
s|uO|+E/O /R}f(s,dv*)/o poxio [ dwngm,—m]

t
< vl + wrreT Squl(f(S))+7TK1K2/ E|: sup |Vz|:|~ (4.24)
[0,7] 0

[0.sATH]

Let thus Cr := [|vo| + wk1Kk2T supyg 1 m1(f(s))]e™*2T. The Gronwall Lemma
allows us to conclude that for all 7 >0, sup, £ [sup[O,TMn] |V[|] < Cr,
from which it readily follows that a.s. lim, 7, = 0o, so that finally,

E [supgo. 7 |V4]] < Cr. The same computation works for (¥[)=o, so that
(4.23) holds.

Step 6. Let (V;);>0 be a cadlag adapted solution to (4.21) with some Poisson
measure N as in Step 2. Recall Lemma 3.2, and define (Vk),>0 as the solution
(which clearly exists and is unique since I (g~ 1/5 1 s<7yN(ds, dvy, d6, do, du) is
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a.s. finite for all 7 > 0) to

N t T 2 K2 N R
VE =, +/ / / / f a(VE vi, 0,0+ 0o (Vi — v, VE —v,))
0 R3 Jo 0 0

x Wyt —o,y Lio= 170/ N(ds, dvy, d6, dg, du). (4.25)

The map @o(Vs— — vy, V¥ — v,) being predictable, we deduce from Steps 3 and

4 that (V)),=0 has the same law as (V),=o. We will now show that (7¥),~o goes
in probability to (¥;);>0, which will yield the uniqueness of the law of (V;);>¢ and
thus will end the proof of (iii). First,

t T 2 K2
sup |V, — V¥ 5/ / / / / Ai(s, vy, 0, ¢, u)N(ds, dv,, dO, de, du),
[0,7] 0 R3 JO 0 0

(4.26)
with
Ap = |a(Vs—, v, 0, @) W usp(r,_—u.)y)

—a(Vl ve, 0.9+ @o(Vie = vis V8 = 0)) Wiyt oy Dio= 1/ (4.27)

Taking the expectation, we get

E |sup |V, — V|
[0.1]

< ds [ ’ [ i | " f(s. dv)BO)d0dgduE [As, v, 6, ¢, )]
(4.28)

Integrating in u over [0, k], we may upperbound the right hand side of (4.28) by
t b4 2w 5
[as [ s.avy [ oo [ agELp(7E ~ vy Abe — v
0 R’ 0 0
la(Vies var 0, 9) — a(P 0a, 0, 0 + 00 (Ve — vi, VE = 0)))|]

t T 2
+ [ s [ psiav) [ pexe [ aELb(17E —v]) ~ b7~ v,

x Ja(Pl v 0,0+ oo (Ve — v, 7 =) ]

w[as [ s [ /3(9)d9/02n doE[ [bViovah) — (|75~ v.))),

x fa(Vs-, 0., 0, 9)l |
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+/Otds /W f(s,dv*)/ol/kﬁ(@)de /Ozn d(pE[b(|I7s’i —u.))

x la(VE, v 0,0+ @o(Vie —vi, VE — v*))|] (4.29)

Using now (H), (2.6) and Lemma 3.2, a calculus (as in the proof of Lemma

3.3-(ii)) gives

E | sup
[0.1]

t
v, — I;Sk)i| < 2mq(2/c2+/c3)/ dsE[ v, — KkH
0

1/k ¢
+ i) / 6B(0)do / ds [E |7F + / v, £ (s, dv*)] )
0 0 R3
(4.30)
Using finally that £ € L% (P;(R?)) and (4.23), using the Gronwall Lemma (licit

loc

due to (4.23)) and the fact that limy fol/k 08(0)d6 = 0 (due to (H)) we get, for all
T >0,

imE | sup |V — Vf| | =0, (4.31)
koo Lo ‘

which concludes the uniqueness proof for M P((4;)i=0, 8v,» Lips(R?)).

Step 7. It remains to prove the existence for M P((A4;):>0, Oy, Li pb(R3)). We
use to this aim a Picard iteration. Let N be a Poisson measure as in Step 2. We
consider the constant process V) = vy, we set ¢y = 0 and we define inductively

t T 2w K2
it =, +/ /3] / / a(V, ve, 0, 9 + 95(s, v)) Dpuzprr v,y
0 R3JO 0 0

X N(ds, dv,db, do, du), (4.32)
and @y (s, V) = @, (s, vs) + eo(VI T —v,, V" —v,) (recall Lemma 3.2). One

§—

easily checks that (4.32) is well-defined due to (H) and (2.6). A computation as
in Step 6 yields that forall > 0, alln > 0,

t
E |:sup|VSn+1 _ Vsn|:| < 2Ky (212 +K3)f dSE[|VS" — ! ] (4.33)
0

[0,7]

so that there exists a cadlag adapted process (V;),;>0 such that

lim E |:sup |V — Vs”‘:| =0 and E |:sup ym] <00 (4.34)
" [0,T] [0,T]
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forall T > 0. To show that (V;),= satisfies M P((4;)i=0, 8v,» Lips(IR?))), we need
to check that forall 0 < s, <.. <5, <s <t <T,all ¢1,..., ¢ € Cp(R?), and
all ¢ € Lipy(RY),

/ t
E|]]e:(7) (aﬁ(m—«zs(Vs)— / Au¢>(Vu>du) = 0. (4.35)

i=1

But we know from (4.32) that for all n > 1,

1 t
£ (TTor ) (o0 =002 = [ so()an) [ =0. @36

i=1 §

Since v — A,¢(v) is continuous (by Lemma 3.2 for example) and bounded by
Cr(1 + |v]) (due to (2.6), (H) and since f € L (P;(R?))), we obtain (4.35) by

loc

going to the limit in (4.36) using (4.34). O
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